skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mutisya, Samuel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Some invasive ants have worldwide distributions and impose substantial impacts on human society and native biodiversity. Yet we know little about how ants impact soil ecosystems in general, much less how soil ecosystems shift when invasive ants move in. We excavated the coarse roots of a monodominant savanna tree in invaded and uninvaded areas to test the hypothesis that the presence of invasive ants would be associated with changes in root distribution and biomass across the landscape. We found that in the presence of invasive ants, trees had a shifted distribution of lateral coarse roots, with proportionally less root biomass near the surface and far from tree stems. In addition, the density of lateral coarse-root biomass was ~ 20% lower for trees within invaded landscapes. Our results suggest that soil-nesting invasive ants can drive important changes in rooting strategy for a tree species that serves a foundational role in the biogeochemical cycles of vertisol savannas. 
    more » « less